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Thermodynamic relations of the Hermitian matrix
ensembles

Yang Chen† and Mourad E H Ismail‡
Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

Received 12 March 1997

Abstract. Applying the Coulomb fluid approach to the Hermitian random matrix ensembles,
universal derivatives of the free energy for a system ofN logarithmically repelling classical
particles under the influence of an external confining potential are derived. It is shown that the
elements of the Jacobi matrix associated with the three-term recurrence relation for a system
of orthogonal polynomials can be expressed in terms of these derivatives and therefore give
an interpretation of the recurrence coefficients as thermodynamic susceptibilities. This provides
an algorithm for the computation of the asymptotic recurrence coefficients for a given weight
function.

We also show that a pair of quasilinear partial differential equations, obtained in the
continuum limit of the Toda lattice, can be integrated exactly in terms of certain auxilliary
functions related to the initial data, and in our formulation in terms of integrals of the logarithm
of the weight function. To demonstrate this procedure we give some examples where the initial
data increases along the half line.

Combining identities of the theory of orthogonal polynomials and certain Coulomb fluid
relations, a second-order ordinary differential equation (with coefficients determined by the
Coulomb fluid density) satisfied by the polynomials is derived. We use this to prove some
conjectures put forward in previous papers. We show that, if the confining potential is convex,
then near the edges of the spectrum of the Jabcobi matrix, orthogonal polynomials of large
degree is uniformly asymptotic to Airy function.

1. Preliminaries

The joint probability distribution denoted byp(x1, . . . , xN), of the eigenvalues,{xj : 1 6
j 6 N}, for an ensemble of complexN × N Hermitian random matrices is given by the
classical formula, see Weyl [29] and also [24],

p(x1, x2, . . . , xN)

N∏
j=1

dxj := [ZN ]−1 exp[−8(x1, . . . , xN)]
N∏
j=1

dxj (1.1)

where

ZN :=
( N∏
j=1

∫
K

dxj

)
exp[−8(x1, . . . , xN)] (1.2)

is the normalization constant, also known as the partition function. Here,

8(x1, . . . , xN) :=
∑

16j6N
u(xj )− 2

∑
16j<k6N

ln |xj − xk| (1.3)
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from the point of statistical mechanics, is the total energy of a system ofN logarithmically
repelling particles obeying Boltzmann statistics subject to a common external potential
u(x) in one dimension, andK is a subset ofR. For sufficiently largeN , we expect this
collection of particles can be approximated by a continuous fluid [12] where techniques
of macroscopic physics such as thermodynamics and electrostatics can be applied. It has
been found that the continuum approach is very accurate and effective, see for example
[4–6]. The Coulomb fluid approximation is described by an equlibrium densityσ(x) which
is obtained by minimizing the free-energy functional,F [σ ],

F [σ ] =
∫
J

dx[u(x)+ tx]σ(x)−
∫
J

dx
∫
J

dyσ(x) ln |x − y|σ(y) (1.4)

subject to ∫
J

dxσ(x) = N (1.5)

where the extra potentialtx, (t > 0) is introduced to generate a one-time flow andJ
is a subset ofR. It turns out that with the introduction of the ‘time’ parameter,t, the
thermodynamic relations; which are the central results of this paper, can be easily derived.

Upon minimization, the densityσ(x) is found to satisfy the integral equation,

A = u(x)+ tx − 2
∫
J

dyσ(y) ln |x − y| x ∈ J (1.6)

whereA is the Lagrange multiplier for the constraint (1.5) and is recognized as the chemical
potential for the fluid. Note thatA is a constant independent ofx for x ∈ J but bothA and
σ depend ont andN . In the framework of potential theory, the constantA

2N , is known as
the Robin constant for the external fieldu(x)2N , see [26].

The integral equation, (1.6), is converted into an equivalent singular integral equation
by taking a derivative with respect tox,

u′(x)+ t = 2P
∫
J

dy

x − y σ(y) x ∈ J. (1.7)

At this stageJ is taken to be a subset ofR. For the purpose of this work we shall assume
that u(x) is convex forx ∈ R. It follows that u′′(x) > 0 almost everywhere. We shall not
consider the case whereu′′(x) = 0 almost everywhere, so we assumeu′′(x) > 0 on a set of
positive measure. With this condition onu(x) it follows thatJ is a single interval denoted
by (a, b). Intuitively, this can be understood by using an analogy from elasticity theory
[25], where the fluid densityσ(x) is identified with the pressure under a stamp pressing
vertically downwards against an elastic half-plane. If the applied force is moderate, the
end points of the interval,a andb, are the points for which the elastic material comes into
contact with the rigid stamp. On the other hand if the force applied to the stamp is too
great the end points will be fixed as the end points of the boundary of the stamp, ifu(x)

has compact support. As the potential,u(x), which we are investigating, is supported inR,
only a finite amount of force could be applied; the points of contact are determined by two
subsidiary conditions to be stated below. There is a further analogy which will help with the
determination of the intervalJ. The potentialu(x) can be viewed as the cross section of a
container into which a charged fluid (with each molecule carrying the same positive charge)
is poured. For a fluid of a fixed amount ofN molecules, the fluid density will terminate
at the end points of an interval, which area and b for the case under consideration, to
minimize the free energy. This requires that the density vanishes at the end points of the
interval. It transpires that the end pointsa and b satisfy two functional equations to be
stated later.
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However, if the potential,u(x), is nonconvex,J could be the union of several disjoint
intervals. This will be dealt with in a separate paper. In section 2, using the Coulomb fluid
method we express the recurrence coefficients as derivatives of the free energy. In section 3,
we show how the initial value problem for the continuum Toda lattice can be integrated
using the Coulomb fluid method. In section 4, explicit solutions of the Toda lattice and the
continuum limit of the Toda equations are obtained. It is found that the time evolution of
certain classes of orthogonal polynomials can be obtained explicitly. In section 5, certain
identities that involve the time evolution of the zeros of the orthogonal polynomials are
derived. In section 6, the differential equation for the single-interval case is derived. This
paper concludes with section 7.

We seek a solution of (1.7) which is nonnegative on(a, b). If imposing the boundary
conditionsσ(a) = σ(b) = 0 lead to aσ satisfyingσ(x) > 0 on (a, b) then according to
the standard theory of singular integral equations [16, 25], the solution of (1.7) is

σ(x) =
√
(b − x)(x − a)

2π2
P

∫ b

a

dy
u′(y)+ t

(y − x)√(b − y)(y − a) (1.8)

anda andb must satisfy the constraint (1.5) as well as the supplementary condition,

0=
∫ b

a

dx
u′(x)+ t√

(b − x)(x − a) . (1.9)

Using (1.8) the normalization condition becomes

N = 1

2π

∫ b

a

dx
x(u′(x)+ t)√
(b − x)(x − a) . (1.10)

The end points of the support of the density,a andb, that are solutions of (1.9) and (1.10)
are denoted bya(N, t) andb(N, t). Note thatN and t are independent variables.

Sometime the boundary conditions thatσ vanishes at the endpoints ofJ do not lead to
a solutionσ(.) which is nonegative onJ . In this case other forms of solutions of (1.7) can
be used. We will encounter this situation in section 2.

2. Orthogonal polynomials and the Coulomb fluid

If {pn(x, t)}n>0 is a system of monic polynomials orthogonal with respect to the weight
function

w(x, t) := exp[−(u(x)+ tx)] x ∈ R (2.1)

and has the orthogonality relation∫ ∞
−∞

dxw(x, t)pm(x, t)pn(x, t) = hn(t)δm,n (2.2)

with hn(t) the square of theL2 norm, then it follows that{pn(x, t)} satisfies a three-term
recurrence relation,

xpn(x, t) = pn+1(x, t)+ αn(t)pn(x, t)+ βn(t)pn−1(x, t) n > 0 (2.3)

whereαn, n > 0 are real andβn > 0, n > 0 with the conventionβ0p−1(x, t) := 0. The
recurrence coefficients{αn} and{βn} can be expressed in terms of thehns of (2.2) as

βn(t) = hn(t)

hn−1(t)
(2.4)

αn(t) = − 1

hn(t)

dhn(t)

dt
. (2.5)



6636 Y Chen and M E H Ismail

Consider the partition function,

ZN(t) =
( ∏

16j6N

∫ ∞
−∞

dxj

)
exp[−8(x1, . . . , xN , t)] (2.6)

where

8(x1, . . . , xN , t) := 8(x1, . . . , xN)+ t
∑

16j6N
xj . (2.7)

According a theorem of Dyson [24], the above multiple integral is also related to thehns
and its value is

ZN(t) = N !
∏

06j6N−1

hj (t). (2.8)

Thus, one can find the time dependence of recurrence coefficients once we know theL2

norms of the polynomials. On the other hand if we define the free energy as

exp[−FN(t)] := ZN(t)

N !
=

∏
06j6N−1

hj (t) h0(t) = 1 (2.9)

we can then apply (2.4) and (2.5) and express the recurrence coefficients in terms of the
free energy in the form

αN(t) = d

dt
[FN+1(t)− FN(t)] (2.10)

βN(t) = exp[−(FN+1(t)+ FN−1(t)− 2FN(t))]. (2.11)

Now for sufficiently largeN, the free energy is approximated by the free energy obtained
from the Coulomb fluid technique and the finite difference indicated in (2.10) and (2.11),
can be expressed as derivatives of the Coulomb fluid free energy given by equation (1.4)
with respect to the particle numberN. Thus

αN(t) = ∂

∂t

[
∂F

∂N
+ 1

2

∂2F

∂N2
+O

(
∂3F

∂N3

)]
(2.12)

βN(t) = exp

[
− ∂

2F

∂N2

](
1− 1

12

∂4F

∂N4
+O

(
∂6F

∂N6

))
(2.13)

where in equations (2.12) and (2.13)F denotes the free energy obtained by substituting the
equilibrium density into the free-energy functional, (1.4).

We now proceed to the computation of the derivatives ofF with respect toN. From
thermodynamics

∂F

∂N
= A. (2.14)

To mathematically verify this, we compute the partial derivative ofF with respect toN
and make use of the boundary conditions,σ(a) = 0= σ(b). A simple calculation shows,

∂F

∂N
=
∫ b

a

dx
∂σ(x)

∂N

[
u(x)+ tx − 2

∫ b

a

dy ln |x − y|σ(y)
]
= A

∫ b

a

dx
∂σ(x)

∂N
= A (2.15)

since ∫ b

a

dxσ(x) = N. (2.16)
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From this we have

∂A

∂t
= x − 2

∫ b

a

dy
∂σ(y)

∂t
ln |x − y|. (2.17)

Since ∂A
∂t

is constant forx ∈ (a, b), we find by computing the derivative of (2.17) with
respect tox,

1= 2P
∫ b

a

dy

x − y
∂σ(y)

∂t
x ∈ (a, b). (2.18)

Using the fact thatN and t are independent variables∫ b

a

dx
∂σ(x)

∂t
= ∂N

∂t
= 0. (2.19)

The general solution for∂σ(x)
∂t

in (2.18) is of this form;

∂σ(x)

∂t
= 1

2π

√
b − x
x − a +

C√
(b − x)(x − a)

where the second term is the solution of the homogeneous equation. The constantC is
− b−a

4π , found from (2.19). Thus,

∂σ(x)

∂t
= 1

2π

(a + b)/2− x√
(b − x)(x − a) . (2.20)

Substituting (2.20) into (2.17) and with the aid of the integrals,∫ 1

0

ds

π

ln s√
s(1− s) = −2 ln 2∫ 1

0

ds

π

√
1− s
s

ln s = − ln 2− 1
2

we find
∂A

∂t
= a + b

2
(2.21)

and

αN(t) = a(N, t)+ b(N, t)
2

+O

(
∂2A

∂t∂N

)
. (2.22)

Taking the partial derivative ofA with respect toN we find,

∂A

∂N
= −2

∫ b

a

dy
∂σ(y)

∂N
ln |x − y|. (2.23)

Noting that ∂A
∂N

is a constant forx ∈ (a, b), we find by taking a derivative of (2.23) with
respect tox that ∂σ

∂N
satisfies the integral equation

P

∫ b

a

dy

y − x
∂σ(y)

∂N
= 0 (2.24)

where the unique solution, satisfying
∫ b
a

dx σ(x)
∂N
= 1, is

∂σ(x)

∂N
= 1

π
√
(b − x)(x − a) . (2.25)
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Therefore,

∂2F

∂N2
= ∂A

∂N
= − ln

[
(b(N, t)− a(N, t))2

16

]
(2.26)

and

βN(t) = [b(N, t)− a(N, t)]2

16

[
1+O

(
∂4F

∂N4

)]
. (2.27)

The derivation of formulae (2.22) and (2.27) relies on the assumptions that

b(N + 1, t)− b(N, t) = o(b(N, t)) and a(N + 1, t)− α(N, t) = o(a(N, t)).

These imply

αN+1(t)− αN(t) = o(αN(t)) and βN+1(t)− βN(t) = o(βN(t)).

This holds if the recurrence coefficients have polynomial growth inN as in the case of Freud
or Erd̈os weights [15, 20–22]. Thus, our formulae can be applied to compute the largeN

behaviour of the recurrence coefficients and extreme zeros of polynomials orthogonal with
respect to Freud and Erdös weights [20, 23, 8]. However, in the cases where the recurrence
coefficients have exponential growth and the polynomials are orthogonal with respect to
weak exponential weight, that isu(x) = O((ln |x|)m), wherem is an even positive integer,
the error terms in (2.22) and (2.27) must be taken into account. The main results in the
section, (2.22) and (2.27) are valid for convexu(x) and u′′(x) > 0 on a set of positive
measure. In section 3, we discuss the relationship between orthogonal polynomials and the
Toda lattice. In a continuum limit, a procedure for integrating a nonlinear wave equation is
given using the Coulomb fluid method.

3. Toda lattice

From equations (2.20) and (2.25) we uncover a dynamical law that governs the motion of
the fluid density which in the context of the recurrence relation is the spectral density of
the Jacobi matrix, wherex is now interpreted as the spectral variable:

∂σ

∂t
= 1

2
[R − x]

∂σ

∂N
(3.1)

where

R(N, t) := a + b
2

(3.2)

is the centre of mass coordinates. With the introduction of the difference coordinates,

r(N, t) := b − a
2

(3.3)

the normalization condition, (1.10), and the supplementary condition, (1.9), becomes
respectively;

2πN

r
=
∫ 1

−1

dss√
1− s2

u′(rs + R) (3.4)

−πt =
∫ 1

−1

ds√
1− s2

u′(rs + R). (3.5)
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By taking partial derivatives with respect toN and t, we find

ε1
∂r

∂N
+ ε0

∂R

∂N
= 0 (3.6)

ε1
∂r

∂t
+ ε0

∂R

∂t
= −π (3.7)[

ε2+ 2πN

r2

]
∂r

∂N
+ ε1

∂R

∂N
= 2π

r
(3.8)[

ε2+ 2πN

r2

]
∂r

∂t
+ ε1

∂R

∂t
= 0 (3.9)

where

εk(r, R) :=
∫ 1

−1

dssk√
1− s2

u′′(rs + R) k > 0. (3.10)

Note thatεk for k > 1 can be expressed in terms ofε2 andε0. For example

ε2 = ε0− 2πN

r2
. (3.11)

From (3.6)–(3.9) and (3.11) we solve for the partial derivatives and find,

r

2π

∂r

∂N
= ε0

ε2
0 − ε2

1

(3.12)

r

2π

∂R

∂N
= − ε1

ε2
0 − ε2

1

(3.13)

1

π

∂R

∂t
= − ε0

ε2
0 − ε2

1

(3.14)

1

π

∂r

∂t
= ε1

ε2
0 − ε2

1

. (3.15)

Note thatε0± ε1 > 0, sinceu′′(x) > 0 on a set of positive measure and

ε0± ε1 =
∫ 1

−1
ds

√
1± s
1∓ s u

′′(rs + R).
Now (3.14) and (3.15) imply that

∂a

∂t
= − π

ε0− ε1
< 0

∂b

∂t
= − π

ε0+ ε1
< 0. (3.16)

Therefore, the extreme zeros,a and b [10], of the time-evolved polynomials are strictly
decreasing functions oft. As the end points of the spectrum contract with increasingt, the
rest of the zeros being squeezed betweena and b are expected to be strictly decreasing
functions oft .

This result will be shown to hold for all zeros in section 4.
From (3.12)–(3.15) we find the following system of partial-differential equations:

∂R

∂t
= − r

2

∂r

∂N

∂r

∂t
= − r

2

∂R

∂N
. (3.17)

This system is recognized as the equation of motion for the Toda lattice in the continuum
limit [28].

Let J = (Jmn),m, n > 0 be the Jacobi matrix with all its entries zero except possibly
the ones given by the recurrence coefficients,

Jn,n+1 = 1 Jn,n = αn(t) Jn,n−1 = βn(t). (3.18)
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Recall thatβn(t) > 0 for n > 0. We now letJ evolve in ‘time’, denoted ast, according to
the dynamical equations

dJ

dt
= [J, J+] (3.19)

where theJ+ denotes the strictly upper triangular part ofJ , that isJ+ results fromJ by
replacing all the entries below the main diagonal by zeros [18]. Written in component
form the evolution equation is equivalent to the following system of ordinary differential
equations

dαn
dt
= βn − βn+1 n > 0 β0 := 0 (3.20)

dβn
dt
= βn(αn−1− αn) n > 0. (3.21)

Note that (3.20) and (3.21) are satisfied by (2.4) and (2.5). In the continuum limit,
αn(t)→ α(n, t), βn(t)→ β(n, t), αn−1− αn→− ∂α

∂n
, βn − βn+1→− ∂β

∂n
, (3.21) and (3.22)

become,

∂α

∂t
= −∂β

∂n
(3.22)

∂β

∂t
= −β ∂α

∂n
. (3.23)

With the indentification:R ↔ α and r2/4 ↔ β, we see thatr(N, t) andR(N, t) which
solve the functional equations (3.4), (3.5), are the integrals of the continuum Toda equations.
Thusr, R and their first partial derivatives with respect toN andt are expressed in terms of
integrals involving the derivatives of the ‘unevolved’ potential,u(x), and therefore in terms
of the initial data,r(N, 0) andR(N, 0). With the condition that lim sup|x|→∞ |u(x)/x| = ∞
the classical moment problem att = 0 has a unique solution [1], this shows that the flow
is isospectral, i.e.J (t) = U−1(t)J (t = 0)U(t), whereU(t) is a unitary transformation.
Furthermore the classical moment problem under the one-time flow is also determinate [1].
Consequently, the initial recurrence coefficientβn(0)(:= βn(0+)) satisfies the condition,
limn→∞

√
βn(0)/n = 0.

Let u(n, t) := ln[β(n, t)], and eliminateα(n, t) from the system (3.22) and (3.23), we
find a nonlinear wave equation satisfied byu(n, t),

∂

∂n

(
eu
∂u

∂n

)
= ∂2u

∂t2
. (3.24)

In the small amplitude limit, eu ≈ 1+ u, the linear wave equation (with speed of sound
equal to unity) is recovered. Equation (3.24) is a second-order quasilinear partial differential
equation and can be reduced to its canonical form through the use of characteristics. Using
the standard treatment (see for example Garabedian [17]), the pair of partial differential
equations can be recast into an equivalent form in which its canonical form can be obtained
easily. Renaming the variablen as x, not to be confused with the spectral parameter
mentioned earlier, we find√

β

(
∂

∂t
+
√
β
∂

∂x

)
α +

(
∂

∂t
+
√
β
∂

∂x

)
β = 0 (3.25)

√
β

(
∂

∂t
−
√
β
∂

∂x

)
α −

(
∂

∂t
−
√
β
∂

∂x

)
β = 0. (3.26)
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With the introduction of the characteristics,ξ(x, t) andη(x, t) where

∂

∂ξ
:= ∂

∂t
+
√
β
∂

∂x
(3.27)

∂

∂η
:= ∂

∂t
−
√
β
∂

∂x
(3.28)

the system can be expressed in the canonical form,

∂α

∂ξ
+ 1√

β

∂β

∂ξ
= 0 (3.29)

∂α

∂η
− 1√

β

∂β

∂η
= 0. (3.30)

An integration gives,

α + 2
√
β = f (η) (3.31)

α − 2
√
β = g(ξ) (3.32)

and from these,

α = f (η)+ g(ξ)
2

(3.33)

β = [f (η)− g(ξ)]2

16
. (3.34)

We may identifyf (η) with b(x, t) andg(ξ) with a(x, t). The quantities,a andb are indeed
the Riemann invariants. Furthermore, taking a partial derivative of (3.30) with respect toη

and a partial derivative of (3.31) with respect toξ, we find by elimination

∂2α

∂ξ∂η
= 0 (3.35)

∂2√β
∂ξ∂η

= 0 (3.36)

two decoupledlinear partial differential equations forα andβ in the characteristics variables
ξ andη. Using the Riemann invariants instead ofξ andη, we have the Hodograph equations,
in which the independent variables area andb, andt andx are now functions ofa andb,

∂x

∂a
−
√
β
∂t

∂a
= 0 (3.37)

∂x

∂b
+
√
β
∂t

∂b
= 0. (3.38)

Recall that
√
β = (b−a)/4, we find by eliminatingx, a partial differential equation satisfied

by t,

∂2t

∂a∂b
− 1

2(b − a)
(
∂t

∂b
− ∂t

∂a

)
= 0 (3.39)

whose Riemann function isA(a, b; a0, b0). The Riemann function depends on the parameters
a0 andb0 can be found in [17, p 150, exericise 9],

A(a, b; a0, b0) = b − a√
(b − a0)(b0− a) 2F1

(
1

2
,

1

2
; 1; (a − a0)(b0− b)

(b − a0)(b0− a)
)
. (3.40)
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Note 2F1(
1
2,

1
2; 1; z) = 2

π
K(
√
z), where K is the complete elliptic integral of the first kind.

An integral equation fort (a, b) can be derived using Riemann methods (see [17, pp 127–
31]);

t (R) = A(P ;R)t (P )+ A(Q;R)t (Q)− A(S;R)t (S)
+
∫ P

S

db′
(
− 1

2(b′ − a) −
∂A

∂b′

)
t (a, b′)

+
∫ Q

S

da′
(
− 1

2(b − a′) −
∂A

∂a′

)
t (a′, b) (3.41)

whereP, R, Q, andS are the vertices of the rectangle with coordinates(a, b0), (a0, b0),

(a0, b) and(a, b) respectively.
In the next section exact solutions of the discrete and continuum Toda equation that can

be obtained by quadrature are given.

4. Explicit solutions of the dynamical equations

We note here that a particular solution of the nonlinear wave equation (3.24) can be obtained
by quadrature. With the ansatz,

u(n, t) = f (n)+ g(t) (4.1)

we find

exp(−g(t))d2g(t)

dt2
= d

dn

(
exp(f (n))

df (n)

dn

)
= c1 (4.2)

wherec1 is a separation constant. Elementary integration gives,

ef (n) = c1

2
n2+ c2n+ c3. (4.3)

Case 1.c1 = 0 In this case

g(t) = c4t + c5 (4.4)

and

β(n, t) = (c2n+ c3) exp(c4t) (4.5)

where the constantc5 has been absorbed inc2 andc3. With β given by (4.4) the relationships
(3.22) and (3.33) imply

α(n, t) = −c2t + c6 if c4 = 0 (4.6)

α(n, t) = −c4n− c2

c4
exp(c4t)+ c6 if c4 6= 0. (4.7)

Case 2.c1 6= 0 In this case

eg(t) = 2c4

c1

1

sinh2[
√
c4[c5− t ]]

(4.8)

if c4 6= 0. The casec4 = 0 is a limiting case of (4.7). Thusc1 can be absorbed inc2, c3

andc4 and through renaming the constants we are led to

β(n, t) = c4(n
2+ 2c2n+ 2c3)

sinh2[
√
c4[c5− t ]]

(4.9)

α(n, t) = −2
√
c4

c1
[c1n+ c2] coth[

√
c4[c5− t ]] + c6. (4.10)
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Thus bothα(n, t) andβ(n, t) diverge att = c5, providedc5 > 0, but are well-defined for
c5 < 0. Note thatc4 < 0 is also allowed in (4.9) and (4.10) which results in replacing sinh2

and coth by sin2 and cot, respectively. We shall see that both cases can be realized in an
explicit model of the Meixner–Pollaczek and Meixner polynomials.

The above analysis points out two possible solutions of the dynamical equations (3.20),
(3.21) through the separation of variables inβn(t). Set

βn(t) = B(t)Bn. (4.11)

Substituting forβn from (4.11) into (3.21) we obtain

1

B(t)

dB(t)

dt
= αn−1(t)− αn(t)

henceαn(t)− αn−1(t) is independent ofn and

αn(t) = C(t)− n

B(t)

dB(t)

dt
. (4.12)

Now (4.10) and (3.20) give

1

B(t)

[
−dC(t)

dt
+ n d2

dt2
(lnB(t))

]
= −Bn + Bn+1. (4.13)

SinceBn is independent oft this indicates that there are constantsc1 andc2 such that

dC(t)

dt
= −c1B(t)

d2

dt2
(lnB(t)) = 2c2B(t) (4.14)

and

Bn = c2n
2+ c1n (4.15)

sinceB0 = 0.

Case 1.c2 = 0 Here we obtain

B(t) = c3 exp(c4t) C(t) = −c1c3

c4
exp(c4t)

and

βn(t) = c1n exp(c4t) αn(t) = −c1

c4
exp(c4t)− c4n+ c5 (4.16)

wherec3 has been absorbed inc1.
In the casec2 6= 0 we integrate the second equation in (4.14) and obtain

dB(t)

dt
= 2B(t)

√
c3+ c2B(t). (4.17)

Case 2.c2 6= 0 andc3 = 0 The integration of (4.17) and (4.14) leads to

B(t) = (c4−√c2t
)−2

C(t) = c5+ c1√
c2

(
c4−√c2t

)−1
.

ThusBn = c2n
2+ c1n and we have established

βn(t) = (c2n+ c1)n

(c4−√c2t)2
(4.18)

αn(t) = c5− c1√
c2(c4−√c2t)

− 2n
√
c2√

c2(c4−√c2t)
. (4.19)
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Case 3.c2c3 6= 0 In the case under consideration (4.17) has the general solution

B(t) = c3/c2

sinh2(c4±√c3t)

and we see that there is no loss of generality in taking the minus sign in the above solution.
Thus

B(t) = c3/c2

sinh2(c4−√c3t)
C(t) = −c1

√
c3

c2
coth(c4−√c3t). (4.20)

Therefore after replacingc1 by c1c2 we obtain

αn(t) = −c1
√
c3 coth(c4−√c3t)− 2n

√
c3 coth(c4−√c3t)+ c5 (4.21)

βn(t) = nc3(n+ c1)

sinh2(c4−√c3t)
. (4.22)

Observe thatαn(t) andβn(t) in cases 2 and 3 blow up in finite time whenc4 > 0 but
are finite for allt if c4 < 0. Furthermore the casec3 < 0 andc4 purely imaginary is allowed
sinceβn > 0 andαn is real. This leads to allowable time bands.

It is interesting to note that all the solutions found through the separation of variables
in β andβn arise from the Meixner, Laguerre, Hermite, or Meixner–Pollaczek polynomials.
The Meixner polynomials are orthogonal with respect to the measure [13, section 10.24]

w(x;β, c) =
∞∑
k=0

ck(β)k

k!
δ(x − k) 0< c < 1 (4.23)

and has the recurrence coefficients

αn = −n(c + 1)− β βn = cn(n+ β − 1). (4.24)

Thus

w(x;β, c)e−xt = w(x;β, ce−t )
hence the Meixner polynomials can evolve without blowing up. This corresponds to
choosing c4 < 0 in the above solutions. On the other hand the Meixner–Pollaczek
polynomials [13, section 2.21] have the weight function

w(λ)(x;φ) = (2| sinφ|)2λ−1

π
exp(−(π − 2φ)x)|0(λ+ ix)|2 (4.25)

and

αn = (n+ λ) cotϕ βn = n(n+ 2λ− 1)

4 sin2 ϕ
0< ϕ < π, λ > 0. (4.26)

It is clear that in (4.25) and (4.26)φ andφ±2jπ , j = 1, 2, . . . lead to the same polynomials.
Furthermore

w(λ)(x;φ)e−tx = w(λ)(x;φ − t/2) (4.27)

hence at some positive timet the expressionφ − t/2 will get outside any interval of the
form (2jπ, (2j +1)π) for j an integer. This causes a blow up in the recursion coefficients.
Also note that

w(λ)(x;π + φ) = w(λ)(−x;−φ). (4.28)

This indicates a division of the time domain into a disjoint union of allowable time bands
with a blow up at the point separating one time interval from the next.
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Finally the Laguerre polynomials

αn = 2n+ α + 1 βn = n(n+ α) α > −1 (4.29)

w(x;α) = xαe−x (4.30)

hence

w(x;α)e−xt = w(x + t;α). (4.31)

Thus the Laguerre polynomials will evolve without a blow up and fall into case 1.
In the next section certain identities involving the time-evolved zeros are obtained.

5. Time evolution of zeros

In this section we discuss the time evolution of zeros of evolved polynomials as they
evolve with time. We employ two methods, Markov’s theorem and the Hellmann–Feynman
theorem. The version we use of Markov’s theorem is more general than the one in Szegö
[27] and was stated in [14, chapter III, problem 15] and is elaborated on in [19]. It asserts
that if {pn(x, t)} satisfy the orthogonality relation∫ b

a

pm(x, t)pn(x, t)dα(x, t) = hn(t)δm,n (5.1)

and

dα(x, t) = ρ(x, t)dα(x) x ∈ (a, b) (5.2)

then the zerosXN,k(t) of pN(x, t) satisfy∫ b

a

p2
N(x, t)

x −XN,k(t)
[
ρt (x, t)

ρ(x, t)
− ρt (XN,k(t), t)
ρ(XN,k(t), t)

]
dα(x, t)

= Ak(t)
[
p′N(XN,k(t), t)

]2 ∂XN,k(t)

∂t
(5.3)

the prime refers to differentiation with respect tox, andρt := ∂ρ

∂t
. The numbersAk are the

Christoffel numbers defined through, [27]

Ak :=
∫ b

a

(
pN(x; t)

p′N(XN,k(t), t)(x −XN,k(t))
)2

dα(x, t) k = 1, 2, . . . , N (5.4)

wherep′N is, as above, the partial derivative with respect tox. The assumptions under
which (5.3) holds are spelled out in the references quoted above. Note that the Christoffel
numbers are positive. On the other hand the Hellmann–Feynman theorem asserts that [19][ N−1∑
j=0

p2
j (XN,k(t), t)/hj (t)

]
∂XN,k(t)

∂t
=

N−1∑
j=0

pj (XN,k(t), t)

×
[
pj (XN,k(t), t)

∂

∂t
αj (t)+ pj−1(XN,k(t), t)

∂

∂t
βj (t)

]
/hj (t). (5.5)

We now come to the question of time evolution of the zeros ofpN(x, t). Following
[18] one can study time evolution where time now is a vector(t1, t2, . . . , tM) with the
time-dependent measure being

dα(x, t) = exp

(
−

M∑
j=1

tj x
j

)
dα(x) M <∞ (5.6)
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whereα(x) is independent of the time parameters. In this case the time variable in (2.4),
(2.5), (3.22) and (3.23) ist1. Thus Markov’s theorem, (5.3), gives

∂XN,k(t)

∂t1
= − hN(t)/Ak(t)

[p′N(XN,k(t), t)]2
. (5.7)

ThereforeXN,k(t) strictly decreases witht1, as one would expect because the additional
positive external potential shrinks the ends of the interval. Similarly the dependence of
XN,k(t) on t2 obeys (5.3), which in this case becomes

∂XN,k(t)

∂t2
= − 1/Ak(t)[

p′N(XN,k(t), t)
]2

∫ ∞
−∞

[x +XN,k(t)]p2
N(x, t)dα(x, t)

= − [αN(t)+XN,k(t)][
p′N(XN,k(t), t)

]2

hN(t)

Ak(t)
. (5.8)

ThereforeXN,k(t) will strictly increase or decrease with time according to whether
αN(t)+XN,k(t) is nonpositive or nonnegative.

The Hellmann–Feynman theorem gives different representations for∂XN,k(t)

∂t1
and ∂XN,k(t)

∂t2
.

For example the dependence ofXN,k(t) on t1 obeys the law

∂XN,k(t)

∂t1
= [pN−1(XN,k(t), t)pN+1(XN,k(t), t)]/hN−1(t)∑N−1

j=0 p
2
j (XN,k(t), t)/hj (t)

. (5.9)

The proof is as follows. Using (4.5) and the Toda equations (3.22) and (3.23) to see that[ N−1∑
j=0

p2
j (XN,k(t), t)/hj (t)

]
∂XN,k(t)

∂t1
=

N−1∑
j=0

(βj − βj+1)

hj (t)
p2
j (XN,k(t), t)

+
N−1∑
j=1

βj (αj−1− αj )
hj (t)

pj (XN,k(t), t)pj−1(XN,k(t), t). (5.10)

Sincehn(t) =
∏n
j=1 βj (t) we can simplify the right-hand side of (5.10) to

N−2∑
j=0

p2
j+1(XN,k(t), t)

hj (t)
−

N−1∑
j=0

βj+1p
2
j (XN,k(t), t)

hj (t)
+

N−1∑
j=0

αj (t)

hj (t)
pj (XN,k(t), t)pj+1(XN,k(t), t)

−
N−1∑
j=0

αj+1(t)

hj (t)
pj (XN,k(t), t)pj+1(XN,k(t), t)

=
N−2∑
j=0

pj+1(XN,k(t), t)

hj (t)

[
pj+1(XN,k(t), t)+ αj (t)pj (XN,k(t), t)

]
−
N−1∑
j=0

pj (XN,k(t), t)

hj (t)

[
αj+1pj+1(XN,k(t), t)+ βj+1pj (XN,k(t), t)

]
.

Using the three-term recurrence relation (2.3) we reduce the series on the extreme right-hand
side above to a telescoping series and it simplifies and leads to (5.9).

Recall the Christoffel–Darboux formula [27]

n−1∑
j=0

p2
j (x)

hj
= pn−1(x)p

′
n(x)− p′n−1(x)pn(x)

hn−1
(5.11)
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valid for monic orthogonal polynomials{pn(x)}, whoseL2 norms are{√hn}. Let us order
the zeros ofpN(x, t) as

XN,1(t) > XN,2(t) > · · · > XN,N(t). (5.12)

From (5.11) it follows thatpN−1(x) p
′
N(x) > 0 andpN+1(x)p

′
N(x) < 0 at the zeros of

pN(x). HencepN−1(x, t)pN+1(x, t) < 0 at x = XN,k(t), 1 6 k 6 N . This and (5.9)
indicate thatXN,k(t) strictly decreases witht . In fact (5.11) gives the following alternate
representation for∂XN,k(t)

∂t

∂XN,k(t)

∂t
= pN+1(XN,k(t), t)

p′N(XN,k(t), t)
. (5.13)

It is of interest to compare the left-hand sides of (5.7) and (5.13) because it leads to the
curious relationship

AkpN+1(XN,k(t), t)p
′
N(XN,k(t), t)+ hN(t) = 0. (5.14)

Even more curious identities arise from (5.7) withk = 1 andk = N and (3.17) which relate
the Christoffel numbers, the derivatives of the polynomials evaluated at the zeros and theε

functions. They are

AN [p′N(XN,N(t), t)]
2 = (ε0− ε1)hN(t) (5.15)

A1[p′N(XN,1(t), t)]
2 = (ε0+ ε1)hN(t). (5.16)

One can also use the Hellmann–Feynman theorem to study thet2 time evolution of the
zeros ofpN(x, t) with α(x, t) as in (5.6). The results are now more complicated and we
decided not to include them because (5.8) is simple enough and we felt thet2 results do not
add to the understanding of the subject matter. However, in a separate paper we shall give
a detail investigation of the special case of thet2 evolution with an even potentialu(x). It
can be shown that the recurrence coefficientsβ(N, t2) satisfies the dispersionless KdV and
this will be of interest to the theory of orthogonal polynomials where the spectrum of the
Jacobi matrix has gaps. In the next section, we derive using a combination of identities from
the theory of orthogonal polynomials and certain Coulomb fluid relations a second-order
ordinary differential equation satisfied by the wavefunction,ϕN(x) := √w(x)pN(x), for
largeN.

6. Differential equations

For the Hermitian matrix ensemble, there are classical examples for which the orthogonal
polynomials in addition to satisfying the recurrence relations also satisfy a second-order
ordinary differential equation. In order to establish asymptotic properties of polynomials
that are orthogonal with respect to nonclassical weight functions, in particular those that are
not covered by Bochner’s theorem [2], it would be very useful if anasymptoticdifferential
equation valid for a large degree could be found. From previous experience, we have
conjectured that if the density near its extreme zeros behaves as

σ(x) ∼ G(a, b)√b − x x ∼ b
σ(x) ∼ H(a, b)√x − a x ∼ a

where

G(a, b) =
√
b − a
2π2

∫ b

a

dy
v′(b)− v′(y)

(b − y)3/2√y − a (6.1)

H(a, b) =
√
b − a
2π2

∫ b

a

dy
v′(y)− v′(a)

(y − a)3/2√b − y (6.2)
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then theuniform asymptotics of the polynomials are√
w(x)pN(x) ∼ Ai(tb) tb := c1[G(a, b)]2/3(b − x) (6.3)√
w(x)pN(x) ∼ Ai(ta) ta := c2[H(a, b)]2/3(x − a) (6.4)

respectively, where Ai(.) is the Airy function,c1 andc2 are constantsindependentof N .
With a combination of identities derived by [3], the recurrence relations and the Coulomb

fluid method, auniversal second-order ordinary differential equation is derived and the
above conjectures could be proved.

For the sake of completeness the differentiation formula of [3] is reproduced here. From
now on we find it convenient to use the orthonormal polynomialsp̂n := pn/

√
hn. With these

the recurrence relations become,

xp̂n(x, t) =
√
βn+1(t)p̂n+1(x, t)+ αnp̂n(x, t)+

√
βn(t)p̂n−1(x, t). (6.5)

To ease notation, thet dependence of the polynomials and the recurrence coefficients is not
displayed. Sincep̂′n(x) is a polynomial of degreen − 1, it can be expanded in terms of
{p̂k; 06 k 6 n− 1};

p̂′n(x) =
n−1∑
k=0

cknpk(x) (6.6)

where the expansion coefficientsckn are determined by the orthonormality relation. Thus

ckn =
∫ ∞
−∞

dyw(y)p̂k(y)p̂
′
n(y) 06 k 6 n− 1 (6.7)

where again the dependence of the weight function and the potentialv := − lnw, on
t is not displayed. Using this we find, through integration by parts and noting that
limx→±∞w(x)xp = 0,

p̂′n(x) = −
∫ ∞
−∞

dy w(y)[v′(x)− v′(y)]Kn(x, y)p̂n(y) (6.8)

where

Kn(x, y) :=
n−1∑
k=0

p̂k(x)p̂k(y) =
√
βn
p̂n(x)p̂n−1(y)− p̂n(y)p̂n−1(x)

x − y . (6.9)

In the above calculation we have made use of the obvious identity,

v′(x)
∫ ∞
−∞

dy w(y)p̂k(y)p̂n(y) = 0 06 k 6 n− 1 (6.10)

to introduce thev′(x)− v′(y) term in (6.8). Thus

p̂′n(x) = −Bn(x)p̂n(x)+ An(x)p̂n−1(x) (6.11)

with

An(x) :=
√
βn

∫ ∞
−∞

dy w(y)
v′(x)− v′(y)

x − y p̂2
n(y) (6.12)

and

Bn(x) :=
√
βn

∫ ∞
−∞

dy w(y)
v′(x)− v′(y)

x − y p̂n(y)p̂n−1(y). (6.13)
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We now derive an identity betweenBn(x) andAn(x). Using the recurrence relation, we
have

Bn(x) =
∫ ∞
−∞

dy w(y)
v′(x)− v′(y)

x − y p̂n(y)[yp̂n(y)−
√
βn+1p̂n+1(y)− αnp̂n(y)]

= − Bn+1(x)− αn√
βn
An(x)+

∫ ∞
−∞

dy w(y)
v′(x)− v′(y)

x − y yp̂2
n(y).

With the partial fraction decomposition,y
x−y = x

x−y − 1, and noting thatw(y)v′(y) =
−w′(y), followed by an integration by parts and discarding boundary terms, gives

Bn(x)+ Bn+1(x) = x − αn√
βn

An(x)− v′(x). (6.14)

We now derive the differential equation satisfied by the wavefunction,

ϕN(x) := exp[−v(x)/2]p̂N (x)

for sufficiently largeN. First note that very largeN , BN(x) is a slowly varying function of
N, andBN(x) ≈ BN+1(x). This gives

BN(x) = x − αN
2
√
βN

AN(x)− v
′(x)
2
. (6.15)

We also note that asαN and βN are thermodynamics quantitiesαN−1 ≈ αN ≈N+1 and
βN−1 ≈ βN ≈ βN+1. Also AN−1(x) ≈ AN(x) ≈ AN+1(x), this will become clear later.
Substitutingp̂N (x) = exp[v(x)/2]ϕN(x) into the differentiation formula (6.11) and make
use of (6.15) we find

ϕ′N(x) = AN(x)
[
ϕN−1(x)− x − αN

2
√
βN

ϕN(x)

]
. (6.16)

Now in the same approximation, the recurrence relation becomes,

x − αN√
βN

ϕN(x) = ϕN+1(x)+ ϕN−1(x). (6.17)

Using the largeN recurrence relations, (6.17), we find by eliminatingx−αN√
βN
ϕN(x), an

alternative expression for (6.16),

ϕ′N(x) =
AN(x)

2

[
ϕN+1(x)− ϕN−1(x)

]
. (6.18)

Note that we have taken carenot to approximateϕN+1(x) andϕN−1(x) by ϕN(x), as the
wavefunction varies rapidly withN. Differentiating (6.18) with respect tox, we find,

ϕ′′N(x) =
A′N(x)

2

[
ϕN−1(x)− ϕN+1(x)

]+ AN(x)
2

[
ϕ′N−1(x)− ϕ′N+1(x)

]
= (lnAN(x))′ ϕ′N(x)+

AN(x)

2

[
ϕ′N−1(x)− ϕ′N+1(x)

]
. (6.19)

Now using the (6.17) again on (6.18), this time eliminatingϕN−1(x), we find a second
differentiation formula,

ϕ′N(x) = AN(x)
[
x − αN
2
√
βN

ϕN(x)− ϕN+1(x)

]
. (6.20)
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ReplaceN by N + 1 in (6.16) andN by N − 1 in (6.20), and a subtraction gives,

ϕ′N−1(x)− ϕ′N+1(x) = AN(x)
[
x − αN

2
√
β
(ϕN+1(x)+ ϕN−1(x))− 2ϕN(x)

]
= AN(x)

[
1

2

[
x − αN√
βN

]2

− 2

]
ϕN(x) (6.21)

where we have used the largeN recurrence relations and the approximation on the recurrence
coefficients mentioned. In this wayϕ′N+1(x) andϕ′N−1(x) are eliminated and we have the
differential equation,

ϕ′′N(x)− (lnAN(x))′ϕ′N + A2
N(x)

[
1−

(
x − αN
2
√
βN

)2
]
ϕN(x) = 0. (6.22)

As it stands (6.22) is quite useless as we do not have any information onAN(x) that are
expressed in terms of the polynomials that we seek in the first place. In the Coulomb
fluid method, as shown in section 2,

√
βN = b−a

4 andαN = b+a
2 wherea andb are edge

parameters that determine the termination points of the fluid density. Using these, a simple
calculation shows that

ϕ′′N(x)− (lnAN(x))′ϕ′N(x)+
A2
N(x)

4βN
(x − a)(b − x)ϕN(x) = 0. (6.23)

This suggests that there is a simple relation betweenAN(x) and fluid densityσ(x). Indeed
this is the case. From the expression ofAk(x), we introduced,

CN(x) :=
N−1∑
k=0

Ak(x)√
βk
=
∫ ∞
−∞

dy
v′(x)− v′(y)

x − y σN(y) (6.24)

where

σN(x) := w(x)KN(x, x) (6.25)

is the exact zero-counting function or theexact density, which can be approximated in
the Coulomb fluid method by the continuum density satisfied by the integral equation. A
telescopic sum gives,

AN(x)√
βN
= CN+1(x)− CN(x) =

∫ ∞
−∞

dy
v′(x)− v′(y)

x − y
[
σN+1(y)− σN(y)

]
≈
∫ b(N+1,t)

a(N+1,t)
dy
v′(x)− v′(y)

x − y σ(y;N + 1)−
∫ b(N,t)

a(N,t)

v′(x)− v′(y)
x − y σ(y,N)

=
∫ b

a

dy
v′(x)− v′(y)

x − y
∂σ(y)

∂N
+ o(1)

=
∫ b

a

dy
v′(x)− v′(y)

x − y
1

π
√
(b − y)(y − a)

= P

π

∫ b

a

dy v′(y)
(y − x)√(b − y)(y − a)

= 2πσ(x)√
(b − x)(x − a) = π

2∂σ
2(x)

∂N
. (6.26)

Thus [
AN(x)

2
√
βN

√
(b − x)(x − a)

]2

= π2σ 2(x). (6.27)
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We also note that

AN(x) = π2
√
βN
∂σ 2(x)

∂N
(6.28)

implies

(lnAN(x))
′ = d

dx
ln

(
∂σ 2(x)

∂N

)
. (6.29)

The differential equation reads

ϕ′′N(x)−
[

d

dx
ln

(
∂σ 2(x)

∂N

)]
ϕ′N(x)+ π2σ 2(x)ϕN(x) = 0. (6.30)

This is the asymptotic differential equation that we seek with coefficients expressed in terms
of a known quantity, the densityσ(x).

From (6.27) or (6.28), we can determine the behaviour ofAN(x) near the edges of the
spectrum of the Jacobi matrix,a andb. A simple calculation shows that,

AN(x) ∼
√
βN

2πG(a, b)√
b − a x ∼ b

σ 2(x) ∼ G2(a, b)(b − x) x ∼ b
AN(x) ∼

√
βN

2πH(a, b)√
b − a x ∼ a

σ 2(x) ∼ H 2(a, b)(x − a) x ∼ a
and the coefficients ofϕ′N(x) vanish. With the variables

tb := [πG(a, b)]2/3(x − b)
ta := [πH(a, b)]2/3(a − x) (6.31)

we see that the wavefunction satisfies the Airy equation,

d2y

dλ2
− λy = 0 (6.32)

whereλ is tb or ta depending on the appropriate edges that we scale to. This establishes
the conjecture stated. Further insight into the polynomials or the wavefunction in the semi-
classical limit can be gained by examining the differentiation formulae. With

g(x) := exp

[∫ x

AN(s)

[
s − αN
2
√
βN

]
ds

]
(6.33)

the differentiation formulae becomes,

(ϕN(x)g(x))
′ = AN(x)ϕN−1(x)g(x) (6.34)(

ϕN−1(x)

g(x)

)′
= −AN(x)ϕN(x)

g(x)
. (6.35)

EliminatingϕN−1(x), gives

d

dx

[
1

AN(x)g2(x)

d

dx
(ϕN(x)g(x))

]
= −AN(x)

g2(x)
(ϕN(x)g(x)). (6.36)

Introducing the new spectral variable,ξ, through,

dξ := AN(x)g2(x)dx (6.37)
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andYN(ξ) := ϕN(x)g(x), the differential equation becomes,

d2YN

dξ2
+ YN(ξ)

g4
= 0. (6.38)

Using the WKB method, we find that the semiclassical wavefunction is given as a suitable
linear combination of

ϕ±(x) ∼ exp

[
±i
∫ x

ds AN(s)

]
. (6.39)

For a class of orthogonal polynomials that arises from the theory of quantum transport in
disordered systems [7, 4], the weight function decreases slowly so that the potential,u(x),

confines the charges only weakly, i.e. lim|x|→∞ u(x)/x = 0, for x ∈ R, in this case the
moment problem is indeterminate and it can be shown that [1], limN→∞ σN(x) exists for
fixed x. Therefore, the densityσ(x) has aN → ∞ limit, denoted by%(x). From (6.26)
and assumingu(x) is even (which impliesαN = 0), it is clear that limN→∞AN(x) =
π%(x), and limN→∞AN(x)/

√
βN = 0. Denoting limN→∞[βN ]1/4ϕN(x) = e1(x) and

limN→∞[βN ]1/4ϕN−1(x) = e2(x), we obtain the following differentiation formulae fore1(x)

and e2(x). The differentiation formulae (6.16) and (6.20) (replacingN by N − 1), in the
limit N →∞, become

e′1(x) = π%(x)e2(x) (6.40)

e′2(x) = −π%(x)e1(x). (6.41)

Thus,e1(x) ande2(x) satisfy the differential equation

y ′′(x)− [ln %(x)]′y(x)+ π2%2(x)y(x) = 0 (6.42)

and we have from these the reproducing kernel conjectured in [8],

lim
N→∞

KN(x, y) := lim
N→∞

√
w(x)KN(x, y)

√
w(y) = e1(x)e2(y)− e2(x)e1(y)

x − y . (6.43)

Using the WKB approximation on (6.42), the functionej (x), j = 1, 2, are linear
combinations of

y±(x) ∼ 1√
π

exp

[
±iπ

∫ x

%(s) ds

]
. (6.44)

This result was conjectured in [8].

7. Conclusion and summary

We have obtained the largeN recurrence coefficients of polynomials orthogonal with
respect to a class of weight function supported inR as thermodynamics susceptibilities
of a Coulomb fluid in one dimension. These polynomials arise naturally in the theory of
large Hermitian random matrices [24]. The polynomials are shown to satisfy a second-
order ordinary differential equation, thus generalizing the theorem of Bochner. These are
of particular interest since the reproducing kernelKN(x, y) plays an important role in
the computation of the variance of linear statistics and the level spacing distribution in
random matrix theory [24]. Using the differential equation, we proved a conjecture on the
semiclassical behaviour of the polynomials arising from a class of indeterminate moment
problems [8] and a conjecture on the ‘edge’ asymptotic of the orthogonal polynomials stated
in [9]

The situation where the spectrum of the Jacobi matrix has gaps will be presented in a
separate paper along with the the associated differential equation.
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