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Abstract. Applying the Coulomb fluid approach to the Hermitian random matrix ensembles,
universal derivatives of the free energy for a system Mflogarithmically repelling classical
particles under the influence of an external confining potential are derived. It is shown that the
elements of the Jacobi matrix associated with the three-term recurrence relation for a system
of orthogonal polynomials can be expressed in terms of these derivatives and therefore give
an interpretation of the recurrence coefficients as thermodynamic susceptibilities. This provides
an algorithm for the computation of the asymptotic recurrence coefficients for a given weight
function.

We also show that a pair of quasilinear partial differential equations, obtained in the
continuum limit of the Toda lattice, can be integrated exactly in terms of certain auxilliary
functions related to the initial data, and in our formulation in terms of integrals of the logarithm
of the weight function. To demonstrate this procedure we give some examples where the initial
data increases along the half line.

Combining identities of the theory of orthogonal polynomials and certain Coulomb fluid
relations, a second-order ordinary differential equation (with coefficients determined by the
Coulomb fluid density) satisfied by the polynomials is derived. We use this to prove some
conjectures put forward in previous papers. We show that, if the confining potential is convex,
then near the edges of the spectrum of the Jabcobi matrix, orthogonal polynomials of large
degree is uniformly asymptotic to Airy function.

1. Preliminaries
The joint probability distribution denoted by(x1, ..., xy), of the eigenvaluesfx; : 1 <

j < N}, for an ensemble of comple¥ x N Hermitian random matrices is given by the
classical formula, see Weyl [29] and also [24],

N N
p(x1, X2, ..., xXN) 1_[ dx; = [Zn] texp[-®(x1, ..., xx)] 1_[ dx; (1.2)
j=1 j=1

where
N
Zy = (]‘[/ dxj> expl=®(xy, ..., xy)] (1.2)
j=17K
is the normalization constant, also known as the partition function. Here,
Olxp, ...y = Y u()—2 > Injxy —x (1.3)
I<jSN 1<j <k<N
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from the point of statistical mechanics, is the total energy of a system logarithmically
repelling particles obeying Boltzmann statistics subject to a common external potential
u(x) in one dimension, an& is a subset ofR. For sufficiently largeN, we expect this
collection of particles can be approximated by a continuous fluid [12] where techniques
of macroscopic physics such as thermodynamics and electrostatics can be applied. It has
been found that the continuum approach is very accurate and effective, see for example
[4-6]. The Coulomb fluid approximation is described by an equlibrium deagity which

is obtained by minimizing the free-energy functionalos],

Flo] = / de[u(x) +tx]o(x) — / dx/dy(r(x) In|x — ylo(y) (1.4)
J J J

subject to

/dxa(x) =N (1.5)
J

where the extra potentialx, (r > 0) is introduced to generate a one-time flow and

is a subset ofR. It turns out that with the introduction of the ‘time’ parameter,the

thermodynamic relations; which are the central results of this paper, can be easily derived.
Upon minimization, the density (x) is found to satisfy the integral equation,

A:u(x)—l—tx—Z/dyU(y)ln |x — | xeJ (1.6)
J

whereA is the Lagrange multiplier for the constraint (1.5) and is recognized as the chemical
potential for the fluid. Note thad is a constant independent offor x € J but bothA and
o depend orr and N. In the framework of potential theory, the const%%t is known as

the Robin constant for the external fie%, see [26].
The integral equation, (1.6), is converted into an equivalent singular integral equation
by taking a derivative with respect tq

d
b/(x)—l—t:ZP/ Y
J

At this stageJ is taken to be a subset &. For the purpose of this work we shall assume
thatu(x) is convex forx € R. It follows thatu”(x) > 0 almost everywhere. We shall not
consider the case whei€(x) = 0 almost everywhere, so we assunféx) > 0 on a set of
positive measure. With this condition afix) it follows that J is a single interval denoted

by (a, b). Intuitively, this can be understood by using an analogy from elasticity theory
[25], where the fluid density (x) is identified with the pressure under a stamp pressing
vertically downwards against an elastic half-plane. If the applied force is moderate, the
end points of the interval andb, are the points for which the elastic material comes into
contact with the rigid stamp. On the other hand if the force applied to the stamp is too
great the end points will be fixed as the end points of the boundary of the stam,) if

has compact support. As the potentialx), which we are investigating, is supportedRn

only a finite amount of force could be applied; the points of contact are determined by two
subsidiary conditions to be stated below. There is a further analogy which will help with the
determination of the interval. The potentiaki(x) can be viewed as the cross section of a
container into which a charged fluid (with each molecule carrying the same positive charge)
is poured. For a fluid of a fixed amount &f molecules, the fluid density will terminate

at the end points of an interval, which ateand b for the case under consideration, to
minimize the free energy. This requires that the density vanishes at the end points of the
interval. It transpires that the end pointsand b satisfy two functional equations to be
stated later.

o(y) x el 1.7)
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However, if the potentialy(x), is nonconvex,J could be the union of several disjoint
intervals. This will be dealt with in a separate paper. In section 2, using the Coulomb fluid
method we express the recurrence coefficients as derivatives of the free energy. In section 3,
we show how the initial value problem for the continuum Toda lattice can be integrated
using the Coulomb fluid method. In section 4, explicit solutions of the Toda lattice and the
continuum limit of the Toda equations are obtained. It is found that the time evolution of
certain classes of orthogonal polynomials can be obtained explicitly. In section 5, certain
identities that involve the time evolution of the zeros of the orthogonal polynomials are
derived. In section 6, the differential equation for the single-interval case is derived. This
paper concludes with section 7.

We seek a solution of (1.7) which is nonnegative (anb). If imposing the boundary
conditionso (a) = o(b) = 0 lead to ao satisfyingo (x) > 0 on (a, b) then according to
the standard theory of singular integral equations [16, 25], the solution of (1.7) is

\/f
o) = b—-—x)x—a) / u'(y) +t (1.8)
(y — )V =)y —a)
anda andb must satisfy the constraint (1.5) as well as the supplementary condition,
b /
0= [ ML (1.9)
Vb —=x)(x —a)
Using (1.8) the normalization condition becomes
b ’
Ne B[ Tge W@+ (1.10)

Vb —x)(x —a)
The end points of the support of the densityandb, that are solutions of (1.9) and (1.10)
are denoted by(N, r) andb(N, t). Note thatN andz are independent variables.
Sometime the boundary conditions tlkatvanishes at the endpoints éfdo not lead to
a solutiono (.) which is nonegative od. In this case other forms of solutions of (1.7) can
be used. We will encounter this situation in section 2.

2. Orthogonal polynomials and the Coulomb fluid

If {p.(x,t)},>0 is @ system of monic polynomials orthogonal with respect to the weight
function

w(x, t) = exp[—(u(x) + tx)] xeR (2.2)
and has the orthogonality relation
/ dxw(x, 1) pm (x, 1) pu(x, 1) = hy ()8 n (2.2)

with &, (t) the square of the.? norm, then it follows tha{p,(x, t)} satisfies a three-term
recurrence relation,

xXpp(x, 1) = puyr(x, 1) + () pp(x, 1) + B (t) pr_a(x, 1) n>0 (2.3)

wherea,,n > 0 are real ang3, > 0,n > 0 with the conventionBop_1(x,t) := 0. The
recurrence coefficientgy,} and{8,} can be expressed in terms of thgs of (2.2) as

hu (1)
(1) = 2.4
B (1) 0 (2.4)
an(t) = — 1 ) (2.5)

ha(r) dr
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Consider the partition function,
Zy(t) = ( / )exp[—cb(xl, e XN, D] (2.6)
1<j<N

where

D(xp, ... xy. 1) = D xn) Y X (2.7)

1<j<N

According a theorem of Dyson [24], the above multiple integral is also related ta,the
and its value is

Zyy=N'" ] mo. (2.8)

0<j<N-1

Thus, one can find the time dependence of recurrence coefficients once we kné# the
norms of the polynomials. On the other hand if we define the free energy as

z
expl=Fy(1)] 1= “V) [T no ho(r) = 1 (2.9)

|
N 0<jsN-1

we can then apply (2.4) and (2.5) and express the recurrence coefficients in terms of the
free energy in the form

d
an(t) = E[FN+1(I) — Fn(@)] (2.10)

Bn (1) = expl=(Fy11(t) + Fy-1(t) — 2Fn (1))]. (2.11)

Now for sufficiently largeN, the free energy is approximated by the free energy obtained
from the Coulomb fluid technique and the finite difference indicated in (2.10) and (2.11),
can be expressed as derivatives of the Coulomb fluid free energy given by equation (1.4)
with respect to the particle numbat. Thus

9 [0F 10°F 9%F
w® =5 [ Toane T O(am)} 212
92F 1 3*F 98F
By (@) = exp[—aNz} (1— 129N4 +0 (31\!‘5)) (2.13)

where in equations (2.12) and (2.18)denotes the free energy obtained by substituting the
equilibrium density into the free-energy functional, (1.4).
We now proceed to the computation of the derivativesFolvith respect toN. From

thermodynamics
OF
N

To mathematically verify this, we compute the partial derivativeFofvith respect toN

and make use of the boundary conditioaigg) = 0 = o (b). A simple calculation shows,

b
/dxi)a(x)[ xX)+tx—2 /dy|n|x—y|a(y):| /dxagj(\;c)zA (2.15)

(2.14)

since

b
/ dxo(x) = N. (2.16)
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From this we have

A b 9o (y)
—=x-2/ d Injx — yl. 2.17
sex—2 [ @ -y 217)

Since%—j‘ is constant forx € (a, b), we find by computing the derivative of (2.17) with
respect tar,

body 9
1= ZP/ v 90(y) x € (a,b). (2.18)
¢« X—Yy ot
Using the fact thatv and: are independent variables
b d AN
f 427w N (2.19)
., ot ot

The general solution fof%*) in (2.18) is of this form;

do(x) 1 [b—x N C
ot 2tVx—a b—-—x)(x—a)
where the second term is the solution of the homogeneous equation. The canstant
—L-¢ found from (2.19). Thus,

do(x) 1 (a+b)/2—x

= . 2.20
ot 21 /(b —x)(x —a) ( )
Substituting (2.20) into (2.17) and with the aid of the integrals,
/ ds Ins oIn?
Vs =) s)
/ ds‘/ “ns = —In2-1%
we find
A b
94 _a+ (2.21)
ot 2
and
a(N,t)+b(N, 1) 924
=—————°-40 . 2.22
an(®) sl o) (2.22)
Taking the partial derivative oA with respect toN we find,
A b0 (y)
—=-21d Injx —yl. 2.23
=2 &7 ey (2.23)

Noting thataN is a constant fox € (a, b), we find by taking a derivative of (2.23) with
respect tox that v satisfies the integral equation

b
P/ dy 300) _, (2.24)
« Yy—Xx ON

where the unique solution, satisfying dx2%) = 1, is
do(x) 1
N  aJb-—x)x—a)

(2.25)
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Therefore,
92F  9A b(N, 1) — a(N, 1))?
aszaNZ_m[(( ) 16"( ”)} (2.26)
and
b(N,t) —a(N, ]2 9*F
Bty = LAV 16"( 2l [l+0<aN4>] (2.27)

The derivation of formulae (2.22) and (2.27) relies on the assumptions that
b(N+1,t) —b(N,t) =0(b(N,1)) and a(N+11t)—a(N,t) =0(a(N,1)).
These imply

an41(t) —an (1) = o(an (1)) and Bn+1(t) — Bn (1) = O(Bn (1)).

This holds if the recurrence coefficients have polynomial growtN ias in the case of Freud

or Erdds weights [15,20-22]. Thus, our formulae can be applied to compute theNarge
behaviour of the recurrence coefficients and extreme zeros of polynomials orthogonal with
respect to Freud and Eid weights [20, 23, 8]. However, in the cases where the recurrence
coefficients have exponential growth and the polynomials are orthogonal with respect to
weak exponential weight, that igx) = O((In |x|)™), wherem is an even positive integer,

the error terms in (2.22) and (2.27) must be taken into account. The main results in the
section, (2.22) and (2.27) are valid for conveg) andu”(x) > 0 on a set of positive
measure. In section 3, we discuss the relationship between orthogonal polynomials and the
Toda lattice. In a continuum limit, a procedure for integrating a nonlinear wave equation is
given using the Coulomb fluid method.

3. Toda lattice

From equations (2.20) and (2.25) we uncover a dynamical law that governs the motion of
the fluid density which in the context of the recurrence relation is the spectral density of
the Jacobi matrix, where is now interpreted as the spectral variable:

%:%[R—x]g—; (3.2)
where

RN, 1) =" er b (3.2)
is the centre of mass coordinates. With the introduction of the difference coordinates,

F(N, 1) = b;a (3.3)

the normalization condition, (1.10), and the supplementary condition, (1.9), becomes
respectively;

27N 1 od
dd :/ . u'(rs + R) (3.4)
r _14/1—52

1
d
-t = / > u'(rs + R). (3.5)
_14/1—52
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By taking partial derivatives with respect /6 and¢, we find

slaa—;] + 80% =0 (3.6)
81%}; + SO?TI; =-7 3.7)
[82 + 27:21\/} % + 813—]15, - ZT” (3.8)
[82 + 27:2]\/} g—: + 818871: =0 (3.9)

where

Lodsst
& (r, R) = /;1 mu (rs +R) k>0. (3.10)

Note thate;, for k > 1 can be expressed in terms®fandey. For example

2t N
€2 =80 — % (3.11)

From (3.6)—(3.9) and (3.11) we solve for the partial derivatives and find,
r or )

I _ 3.12
21 N g2 — &2 (3.12)
r OR e1
e 3.13
2 ON 83 — e% ( )
10R
o (3.14)
T ot £y — &1
10r &1
- = . 3.15
Tt g5 —e? (3.15)
Note thateg £ &1 > 0, sinceu”(x) > 0 on a set of positive measure and
1 1+s ,
goter = ds u"(rs + R).
_1 1:FS
Now (3.14) and (3.15) imply that
0 b
fa__ T o Z___T _o (3.16)
ot g0 — €1 ot g+ &1

Therefore, the extreme zerog,and b [10], of the time-evolved polynomials are strictly
decreasing functions af As the end points of the spectrum contract with increasjrie
rest of the zeros being squeezed betweeand b are expected to be strictly decreasing
functions ofz.

This result will be shown to hold for all zeros in section 4.

From (3.12)—(3.15) we find the following system of partial-differential equations:

oR r or ar r OR
at 29N at 29N’ (3.17)
This system is recognized as the equation of motion for the Toda lattice in the continuum
limit [28].
Let J = (Jun), m,n > 0 be the Jacobi matrix with all its entries zero except possibly
the ones given by the recurrence coefficients,

Jn,n+l =1 Jn,n = an(t) Jn,n—l = lgn(t)~ (318)
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Recall thatg, () > 0 for n > 0. We now letJ evolve in ‘time’, denoted as, according to
the dynamical equations

dJ

— =[J,J 3.19

g = (3.19)
where theJ, denotes the strictly upper triangular part bf that is J;. results fromJ by
replacing all the entries below the main diagonal by zeros [18]. Written in component
form the evolution equation is equivalent to the following system of ordinary differential
equations

dor,,
=P om0 foi=0 (3.20)
d£l’l = ﬂn (an—l - an) nz 0. (321)

Note that (3.20) and (3.21) are satisfied by (2.4) and (2.5). In the continuum limit,
(1) = a(n, 1), Bu(t) = B, 1), ayot —ay — =22 B, — Boy1 — — 2 (3.21) and (3.22)
become,

oo 0B (3.22)
at on
B o

With the indentification: R <> o andr?/4 < B, we see thak(N, ) and R(N, t) which
solve the functional equations (3.4), (3.5), are the integrals of the continuum Toda equations.
Thusr, R and their first partial derivatives with respecttoandr are expressed in terms of
integrals involving the derivatives of the ‘unevolved’ potentialy), and therefore in terms
of the initial data; (N, 0) and R(N, 0). With the condition that lim syp_, ., [u(x)/x| = oo
the classical moment problem at= 0 has a unique solution [1], this shows that the flow
is isospectral, i.eJ(t) = U @) J(t = 0O)U(¢), whereU(¢) is a unitary transformation.
Furthermore the classical moment problem under the one-time flow is also determinate [1].
Consequently, the initial recurrence coefficight(0)(:= B,(0")) satisfies the condition,
lim, - oo m/” =0.

Let u(n, t) :=In[B(n, t)], and eliminatex(n, t) from the system (3.22) and (3.23), we
find a nonlinear wave equation satisfied dbg:, 1),

3 [ 0u) 0%

In the small amplitude limit, ‘e~ 1 + u, the linear wave equation (with speed of sound
equal to unity) is recovered. Equation (3.24) is a second-order quasilinear partial differential
equation and can be reduced to its canonical form through the use of characteristics. Using
the standard treatment (see for example Garabedian [17]), the pair of partial differential
equations can be recast into an equivalent form in which its canonical form can be obtained
easily. Renaming the variable as x, not to be confused with the spectral parameter
mentioned earlier, we find

¢Eai+¢ﬁi>a+<;+v@£>ﬂ=0 (3.25)
¢E(a ¢Ea>a—<a ¢E8)ﬁ:a (3.26)

o Vox ar Vox
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With the introduction of the characteristi(ﬂ,x, t) andn(x, t) where

ad
ag 81‘ f — (3.27)
ad
o = ff (3.28)
the system can be expressed in the canonical form,
aa 198
3.29
e (329
8a 1 98
o 3.30
an /B an (3.30)
An integration gives,
a+2y/p = fn) (3.31)
o« —2/p =g (3.32)
and from these,
_ w (3.33)
_Lra) —g®)?
p= B (3.34)

We may identify f () with b(x, ) andg (&) with a(x, ). The quantitiesq andb are indeed
the Riemann invariants. Furthermore, taking a partial derivative of (3.30) with respect to
and a partial derivative of (3.31) with respect&pwe find by elimination

9%

259 = (3.35)
2

VB = (3.36)
0E0n

two decoupledinear partial differential equations far andg in the characteristics variables
& andn. Using the Riemann invariants insteadsadindn, we have the Hodograph equations,
in which the independent variables arandb, ands andx are now functions of andb,

0x ot
- I 37
Y ‘/Baa 0 (3.37)
0x at
o T \/E% =0. (3.38)

Recall that,/8 = (b—a)/4, we find by eliminatingy, a partial differential equation satisfied
by ¢,

9%t 1 ar ot

- —=—1]=0 3.39
dadb 2(b—a) (81) 8a) ( )
whose Riemann function i&(a, b; ag, bo). The Riemann function depends on the parameters
ap andbg can be found in [17, p 150, exericise 9],

b—a <1 1 .(a—ao)(bo—b)>

Al braos 20 = = oo —a) 2\ 2 2 b —ag) o - )

(3.40)
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NoteFi1(3, 3; 1; 2) = 2K(+/2), where K is the complete elliptic integral of the first kind.
An integral equation for(a, b) can be derived using Riemann methods (see [17, pp 127—
31));

{(R) = A(P; R)I(P) + A(Q: R)I(Q) — A(S: R)I(S)
de’ 71 94 tla, b
+/S (_zaa/—a)_ab’) (@b

e 1 dA
da' ( ———~ — — ) t(d, b 3.41
+/S a( 5o 8a,) (@, b) (3.41)
where P, R, Q, and S are the vertices of the rectangle with coordinatesho), (ao, bo),
(ag, b) and (a, b) respectively.
In the next section exact solutions of the discrete and continuum Toda equation that can
be obtained by quadrature are given.

4. Explicit solutions of the dynamical equations

We note here that a particular solution of the nonlinear wave equation (3.24) can be obtained
by quadrature. With the ansatz,

u(n,t) = f(n)+g() (4.1)

we find
dg(t d df(n

exp(—gm)%i) =4 <eXp(f(n)) ’; )) =1 (4.2)
wherec; is a separation constant. Elementary integration gives,

/™ = C—Zln2 + con + c3. (4.3)
Case 1.c; =0 In this case

g(t) = cat +c5 (4.4)
and

B(n, 1) = (con + c3) explcat) (4.5)

where the constant has been absorbeddn andcs. With 8 given by (4.4) the relationships
(3.22) and (3.33) imply

a(n,t) = —cot + cg if ca=0 (4.6)
an,t) = —can — @ exp(cat) + cp if 4 #0. 4.7)
ca

Case 2.c; # 0 In this case
eg'(t) — % 1
c1 sintf[/c,[cs — 1]]
if ¢4 # 0. The case4 = 0 is a limiting case of (4.7). Thug can be absorbed i, c3
andc4 and through renaming the constants we are led to
ca(n? + 2con + 2c3)

PO = Sinfel eales — 11 “9

2V 0+ es]cothly/eales — 1] -+ ce. (4.10)

(4.8)

a(”’ t) = -
1
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Thus botha(n, t) and 8(n, t) diverge atr = c¢s, providedcs > 0, but are well-defined for
¢cs < 0. Note thates < 0 is also allowed in (4.9) and (4.10) which results in replacingZinh
and coth by sifiand cot, respectively. We shall see that both cases can be realized in an
explicit model of the Meixner—Pollaczek and Meixner polynomials.

The above analysis points out two possible solutions of the dynamical equations (3.20),
(3.21) through the separation of variablesgiz). Set

Bu(t) = B(t)B,. (4.11)

Substituting forg, from (4.11) into (3.21) we obtain
1 dB®)

B & op—1(t) — an(?)

hencew, (1) — «,_1(¢) is independent of and
n dB(t

() = - 100, (4.12)
Now (4.10) and (3.20) give

% [— dfjt“) + ndd—;an B(r))} = B, 4+ By (4.13)
Since B, is independent of this indicates that there are constarntsandc, such that

dit(t) = —c1B(1) ddTZZ(ln B(t)) = 2c2B(1) (4.14)
and

B, = con® + cin (4.15)
since By = 0.
Case 1.c, =0 Here we obtain

B(1) = csexpleat)  C(t) = —Ci—? exp(car)
and

Bu(t) = cinexplcat)  an(t) = —% explcat) — can + cs (4.16)

wherec; has been absorbed in.
In the caser; # 0 we integrate the second equation in (4.14) and obtain

B _ 2Bty yes + c2B0). (4.17)

dr
Case 2.c; # 0andc3 =0 The integration of (4.17) and (4.14) leads to

B(f)=(C4—J72t)_2 C(t)=C5+%(C4—@t)_l.

Thus B, = c,n? + ¢1n and we have established

_ (con + c1)n
Bu(t) = m (4.18)
o, (t) = cs a 2ny/ca (4.19)

 Jealea—Jeat)  Jealea — Jeat)
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Case 3.coc3 # 0 In the case under consideration (4.17) has the general solution
_ cs/c2
sinkP(cs + (/cat)

and we see that there is no loss of generality in taking the minus sign in the above solution.
Thus

B(1)

c3/c2 c1

V3
~ sintf(ca — oat) == —Jan. (42
sint?(cq — /cat) co o cothlcs — /cat) (4.20)

Therefore after replacing, by ci1c, we obtain
a, (1) = —c14/c3C0th(cq — 4/c3t) — 2n4/c3coth(cq — A/c3t) + cs5 (4.21)

Bty = "Bt (4.22)
sinkP(cs — /cat)
Observe thaty,(r) and 8,(¢) in cases 2 and 3 blow up in finite time when > 0 but
are finite for allz if ¢4 < 0. Furthermore the casg < 0 andc,4 purely imaginary is allowed
sinceB, > 0 andq, is real. This leads to allowable time bands.
It is interesting to note that all the solutions found through the separation of variables
in 8 and g, arise from the Meixner, Laguerre, Hermite, or Meixner—Pollaczek polynomials.
The Meixner polynomials are orthogonal with respect to the measure [13, section 10.24]

B(1)

wx; B c)—iCk(ﬂ)kS(x—k) O<ec<1 (4.23)
Pl = k! '
and has the recurrence coefficients
a, =—n(c+1)—p B =cn(n+p—1). (4.24)

Thus
w(x; B, o)€M =w(x; B, ce™)

hence the Meixner polynomials can evolve without blowing up. This corresponds to
choosingcs < 0 in the above solutions. On the other hand the Meixner—Pollaczek
polynomials [13, section 2.21] have the weight function

H 2)0—1
w™ (x; ¢) = (2|S'+”) exp(—(r — 29)x)|[T (A + ix)|? (4.25)
and
o, = (n + A) coty By = w O<gp<mAr>0. (4.26)
4sirf ¢

Itis clear that in (4.25) and (4.2@)and¢+2jx, j = 1, 2, ... lead to the same polynomials.
Furthermore

w® (x; p)e ™ = wP(x; ¢ —1/2) (4.27)

hence at some positive tinrethe expressio® — ¢/2 will get outside any interval of the
form (2jr, (2j + 1)) for j an integer. This causes a blow up in the recursion coefficients.
Also note that

wh x4+ @) = wh (—x; —¢). (4.28)

This indicates a division of the time domain into a disjoint union of allowable time bands
with a blow up at the point separating one time interval from the next.
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Finally the Laguerre polynomials

o, =2n+a+1 B, =nn—+a) oa>-1 (4.29)

wx; a) =x%e* (4.30)
hence

wx; o)e ™ =wx +1; o). (4.31)

Thus the Laguerre polynomials will evolve without a blow up and fall into case 1.
In the next section certain identities involving the time-evolved zeros are obtained.

5. Time evolution of zeros

In this section we discuss the time evolution of zeros of evolved polynomials as they
evolve with time. We employ two methods, Markov's theorem and the Hellmann—Feynman
theorem. The version we use of Markov's theorem is more general than the one ih Szeg
[27] and was stated in [14, chapter Ill, problem 15] and is elaborated on in [19]. It asserts
that if {p,(x, 1)} satisfy the orthogonality relation

b
/ Pm(X,f)Pn(xJ)da(xaf) :hn(t)‘sm,n (51)

and
da(x, 1) = p(x, t)da(x) x € (a,b) (5.2)
then the zeros(y x(¢t) of py(x,t) satisfy
/b Py, 1) [pt(x,» Xy (@), r>] dae. 1)
« X—=Xna@) Lpx,t)  p(Xyi(0), 1) ’
20X N k(1)
ot

the prime refers to differentiation with respectitpandp, := %. The numbersA; are the
Christoffel numbers defined through, [27]

b . 2
Ay :=/ ( : pr(xi 1) ) de(x,t)  k=12,....N (5.4)
a \PyXni@®),)(x — Xy ()

where p), is, as above, the partial derivative with respectxto The assumptions under
which (5.3) holds are spelled out in the references quoted above. Note that the Christoffel
numbers are positive. On the other hand the Hellmann—Feynman theorem asserts that [19]

[Zp, (Xy(0), 1)/ hy (r)] Nt"() = Zp,(xNk(n )

= Ac(t) [Py (Xnx (1), )] (5.3)

X |:Pj(XN,k(t)7t) a;(t) + pi—1(Xnx(t), 1) — ﬁ/(f)] /hj(t). (5.5)

We now come to the question of time evolution of the zeropfx, ). Following
[18] one can study time evolution where time now is a vedt@rr, ..., 1) with the
time-dependent measure being

M
da(x,t) = exp( — Z tjx-f)doe(x) M < o0 (5.6)
=1
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wherea(x) is independent of the time parameters. In this case the time variable in (2.4),
(2.5), (3.22) and (3.23) ig. Thus Markov’s theorem, (5.3), gives

OXni(@) _  hy(6)/ A1)
ot [Py (Xni(@), D]?
Therefore Xy «(¢) strictly decreases withy, as one would expect because the additional

positive external potential shrinks the ends of the interval. Similarly the dependence of
Xn x(t) ont, obeys (5.3), which in this case becomes

0X y (1 1/A. (¢ o
g,k( ) _ | /AL() 2/ [ + Xy (O] P2 (x, e (x, 1)
f2 [Py Xy (@), )] /o0
an(®) + Xy (] Ay ()
[Py (X i), 0]7 A
Therefore Xy () will strictly increase or decrease with time according to whether
ay(t) + Xy (¢) is nonpositive or nonnegative.
The Hellmann-Feynman theorem gives different representatiorisfo¥ and X240,
For example the dependence Xf; ,(t) on ¢, obeys the law
OXni () _ [Pn-1(Xn k@), ) px1 (X i (1), DI/ By (1)

on Yoo PR (@), 1)/ i)

The proof is as follows. Using (4.5) and the Toda equations (3.22) and (3.23) to see that

0Xna(t) _ X~ (B — Bjv1)
o WPJ(XNk(I) 1)

(5.7)

(5.8)

(5.9)

[Z P2(Xn (). 1)/ <r>]

j=0

—i—Z ﬁj(a;, tt) P/(XNk(f) Hpj—1(Xn (), 1). (5.10)

Sinceh, (t) =[]

;=18 () we can simplify the right-hand side of (5.10) to

N-2 - : .
Pra(Xna(), 1) Biv1p?(Xn i (1), 1) o (6)
JX: h;(t) ; h;(t) +Zc;h ()pJ(XNk([) Dpr(Xn (). 1)
= @1 (0)
_ ,:Zo h;(t) Pi(Xn i), ) pjs1(Xn k(1) 1)

_ sz P (Xn (1), 1)

(1) [Pj+1(Xn i (@), 1) + o; () p; (X (1), )]

j=0

Zl Pi(Xni(0), 1)

7y (1) [j41Pj41(Xn (1), 1) + Bir1p; X n i (D), D] .

Jj=
Using the three-term recurrence relation (2.3) we reduce the series on the extreme right-hand
side above to a telescoping series and it simplifies and leads to (5.9).
Recall the Christoffel-Darboux formula [27]

Zp](x) Pn—-1(X) P, (x) = p,_1(x) pn (x)

5.11
3 i (5.11)

j=0
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valid for monic orthogonal polynomialp, (x)}, whoseL? norms are{y/h,}. Let us order
the zeros ofpy(x,t) as

XN,l(t) > XNyz(I) > e > XN,N(I)- (512)

From (5.11) it follows thatpy_1(x) pjy(x) > 0 and py;1(x)py(x) < O at the zeros of
py(x). Hencepy_i(x,t)py+1(x,t) < 0 atx = Xy(), 1 < k < N. This and (5.9)
indicate thatXy . (¢) strictly decreases with. In fact (5.11) gives the following alternate
representation fof X+
OXNi()  pN41(Xn (D), 1)
ot PyXni@), 1)

It is of interest to compare the left-hand sides of (5.7) and (5.13) because it leads to the
curious relationship

ApNs1(Xn i (@), D py (Xn (1), 1) + hy(r) = 0. (5.14)
Even more curious identities arise from (5.7) witk= 1 andk = N and (3.17) which relate
the Christoffel numbers, the derivatives of the polynomials evaluated at the zeros and the
functions. They are

ANIPNXn v (@), D] = (g0 — ey (1) (5.15)

Adlpy (Xn.a(0), D)% = (g0 + ey (1). (5.16)
One can also use the Hellmann—Feynman theorem to study ttime evolution of the
zeros of py (x, t) with a(x, ) as in (5.6). The results are now more complicated and we
decided not to include them because (5.8) is simple enough and we feltrémults do not
add to the understanding of the subject matter. However, in a separate paper we shall give
a detail investigation of the special case of thevolution with an even potentiad(x). It
can be shown that the recurrence coefficigftd, r,) satisfies the dispersionless KdV and
this will be of interest to the theory of orthogonal polynomials where the spectrum of the
Jacobi matrix has gaps. In the next section, we derive using a combination of identities from
the theory of orthogonal polynomials and certain Coulomb fluid relations a second-order
ordinary differential equation satisfied by the wavefunctipR(x) = w(x)pn(x), for
large N.

(5.13)

6. Differential equations

For the Hermitian matrix ensemble, there are classical examples for which the orthogonal
polynomials in addition to satisfying the recurrence relations also satisfy a second-order
ordinary differential equation. In order to establish asymptotic properties of polynomials
that are orthogonal with respect to nonclassical weight functions, in particular those that are
not covered by Bochner's theorem [2], it would be very useful ileagmptoticdifferential
equation valid for a large degree could be found. From previous experience, we have
conjectured that if the density near its extreme zeros behaves as

o(x) ~ G(a,b)vb —x x~b
o(x)~ H(a,b)v/x —a X ~a

where
_Wb—a b v'(b) — V' (y)
G(a,b) = 2 /a dy(b—y)3/2 v —a (6.1)
_Vh—a [t V) - V@
H(a,b) = o /u dy(y—a)3/2 = (6.2)
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then theuniform asymptotics of the polynomials are

Vw@) py(x) ~ Ai(t) ty := c1[G(a, b))?3(b — x) (6.3)
w(x) py(x) ~ Ai(ty) te = co[H(a, )3 x — a) (6.4)

respectively, where Ai) is the Airy function,c; andc;, are constant;xdependenbf N.

With a combination of identities derived by [3], the recurrence relations and the Coulomb
fluid method, auniversal second-order ordinary differential equation is derived and the
above conjectures could be proved.

For the sake of completeness the differentiation formula of [3] is reproduced here. From
now on we find it convenient to use the orthonormal polynonyals= p, /v/h,. With these
the recurrence relations become,

xﬁn(xvt) = ﬂn+1(t)l;n+1(xst)+anﬁn(xat)+\/,8n(t)ﬁnfl(xvt)- (65)

To ease notation, thedependence of the polynomials and the recurrence coefficients is not
displayed. Sincep) (x) is a polynomial of degree — 1, it can be expanded in terms of
{(P:0<k<n—1}

n—1

Prx) = cnpi(x) (6.6)
k=0
where the expansion coefficientg, are determined by the orthonormality relation. Thus

o = / dwMAMALG)  O<k<n—1 6.7)

where again the dependence of the weight function and the potential —Inw, on
¢t is not displayed. Using this we find, through integration by parts and noting that
M, S 400 wx)x? =0,

70 == [ e = VO )5 0) (6.9
where

Ko (e y) i ni:ﬁk(x)f’k(y) JB, P b 1(y}2 _;%(y)m 1@ 69)
In the above calculation w_e have made use of the obvious identity,

V0 [ dumnmhm=0  0<k<n-1 (6.10)
to introduce they'(x) — v'(y) term in (6.8). Thus

Pr(x) = =Bu(x) pu(x) + An(x) pr-1(x) (6.11)
with

Anx) = VB, / Z dy w(y)Wﬁf(y) (6.12)
and

By(x) = /B, / dyw ()”(x) (y)ﬁnmpn L), (6.13)
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We now derive an identity betweeB,(x) and A, (x). Using the recurrence relation, we
have

B,(x) = / dy w(y)%y(y)ﬁn(y)[ypn(y) VBps1 Pt () — i pu(3)]

Bup1(x) — o A, (x) + / dyw(y)%:(”yﬁi(y).

VB,
With the partial fraction decompositionx%V = Y%y — 1, and noting thatw(y)v'(y) =
—w/(y), followed by an integration by parts and discarding boundary terms, gives
X — ,
B,(x) + B,y1(x) = N A, (x) —v'(x). (6.14)

We now derive the differential equation satisfied by the wavefunction,
@ (x) 1= expl-v(x)/2]py(x)

for sufficiently largeN. First note that very larg&/, By (x) is a slowly varying function of
N, and By(x) ~ By1(x). This gives

N oA v'(x)
N - .
ZJBN 2
We also note that aay and gy are thermodynamics quantities,_; ~ ay ~yy1 and
Bn-1 ~ By & Bny1. AlSO Ay_1(x) = Ay(x) = Ayi1(x), this will become clear later.
Substitutingpy (x) = explv(x)/2]en (x) into the differentiation formula (6.11) and make
use of (6.15) we find

By(x) =

(6.15)

Py () = Ay(x) [(pzv 1(x) — Yo (x )} (6.16)

Z\FN
Now in the same approximation, the recurrence relation becomes,
X —ON

VB

Using the largeN recurrence relations, (6.17), we find by eliminatiﬁgg—”’gojv(x), an
N
alternative expression for (6.16),
Ay (x)
2

Note that we have taken camot to approximatepy.1(x) and py_1(x) by ¢y (x), as the
wavefunction varies rapidly wittv. Differentiating (6.18) with respect to, we find,

SN () = @y () + en_a(x). (6.17)

Py () = [on1(x) = on-1(0)] . (6.18)

A’ A
o0 = 0 oy 10— ona] + M0 640~ Gha0)]
= (nAxx)) ¢y (x) + ”2( )[qu 1(0) — oy ()] (6.19)

Now using the (6.17) again on (6.18), this time eliminating_1(x), we find a second
differentiation formula,

Py(x) = Ay (x) [ Yoy (x) — ¢N+1(x)] . (6.20)

2By
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ReplaceN by N + 1 in (6.16) andN by N — 1 in (6.20), and a subtraction gives,

Py_1(X) — Py (x) = AN(X)|: N/ N (oni1(x) + o 1(x))—2(ﬂzv(x):|

2
AN(x)[ [x “N} —Z}oN(x) (6.21)

VB

where we have used the largyerecurrence relations and the approximation on the recurrence
coefficients mentioned. In this way, ,,(x) andgj,_,(x) are eliminated and we have the
differential equation,

2By

As it stands (6.22) is quite useless as we do not have any informatioty@n) that are
expressed in terms of the polynomials that we seek in the first place. In the Coulomb
fluid method, as shown in section 2,8, = %3¢ 7 anday = b"z““ wherea andb are edge
parameters that determine the termination pomts of the fluid density. Using these, a simple

calculation shows that

_ 2
0l (x) — (IN Ay (x)) @y + A2 (x) [ (x “N> j|g0N(x) —0.  (6.22)

AR ()
4B
This suggests that there is a simple relation betwégix) and fluid density (x). Indeed

this is the case. From the expression4qgfx), we introduced,

oy (@) — (N Ay () ey (x) + (x —a)(b — x)gn(x) = 0. (6.23)

N-1
_ Ag(x) /"" v'(x) —v'(y)
C = = dy ——— 72 6.24
v () kE:O V7 Py on(y) (6.24)
where
on(x) = w@)Ly(x, x) (6.25)

is the exact zero-counting function or thexact density, which can be approximated in
the Coulomb fluid method by the continuum density satisfied by the integral equation. A
telescopic sum gives,

Ajg’;) = Cxaat = Gy = [~y YOV ) —ox )]
b(N+1,1) / o b(N,t) ,./ o
%/ OIyv(x) U(y)o(y;N+1)—/ v (x) v(y)a(%N)
a(N+1,1) X =Yy a(N,1) X =Yy
P V@) =V () do(y)
—fdy Py oy o
. /b q v'(x) —v'(y) 1
= y
x—y wJO-y)y-—a)
/ dy v'(y)
=)V b—=y)y—a)
2
2mo(x) 71280 (x) (6.26)
«/(b—x)(x —a) oN
Thus

[ VO S mG—a } — 7262(x). (6.27)
2JBy
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We also note that

do(x)
An(x) =%/By N (6.28)
implies
, _d do(x)
The differential equation reads
d do?
P (x) — |:dx In (CZN(X)>:| Py (x) + 7%0%(x)pn(x) = 0. (6.30)

This is the asymptotic differential equation that we seek with coefficients expressed in terms
of a known quantity, the density(x).

From (6.27) or (6.28), we can determine the behaviouA gfx) near the edges of the
spectrum of the Jacobi matrix,andb. A simple calculation shows that,

21 G(a, b)
o2(x) ~ G%*(a, b)(b — x) x~b
2m H(a, b)
AN(.X) N\/BN?; X ~da
?(x) ~ H?(a, b)(x — a) x~a

and the coefficients ap), (x) vanish. With the variables

1 =[G (a, b)]?3x —b)

6.31
te = [7H(a, b)]?3@a - x) (6:31)
we see that the wavefunction satisfies the Airy equation,
d?y
~2 =0 6.32
gz~ M (6.32)

wherea is 1, or 1, depending on the appropriate edges that we scale to. This establishes
the conjecture stated. Further insight into the polynomials or the wavefunction in the semi-
classical limit can be gained by examining the differentiation formulae. With

g(x) = exp[/' Apn(s) [SZ:/;::] ds] (6.33)
the differentiation formulae becomes,
(pn (X)g(x)) = Ay (X)pn-1(x)g(x) (6.34)
<§0N—1(x)> _ _AN(X)QDN(X). (6.35)
g(x) g(x)
Eliminating py_1(x), gives
d 1 d Ay
@ [AN(x)gz(x) dx(wN(X)g(x))} = () PN, (6.36)

Introducing the new spectral variablg, through,
dé == Ay (x)g2(x)dx (6.37)
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andYy (&) := ¢y (x)g(x), the differential equation becomes,

d?Yy n Yy

ds2 gt
Using the WKB method, we find that the semiclassical wavefunction is given as a suitable
linear combination of

@i (x) ~ exp[ii /‘X ds AN(S)] . (6.39)

For a class of orthogonal polynomials that arises from the theory of quantum transport in
disordered systems [7, 4], the weight function decreases slowly so that the poieptjal,
confines the charges only weakly, i.e. lim. u(x)/x = 0, for x € R, in this case the
moment problem is indeterminate and it can be shown that [1}y limoy(x) exists for

fixed x. Therefore, the density (x) has aN — oo limit, denoted byo(x). From (6.26)

and assuminge(x) is even (which impliesxy = 0), it is clear that ling_ . Ay(x) =
mo(x), and limy_ . Ay(x)//By = 0. Denoting limy_ o[Bn]Y*on(x) = e1(x) and

liMy_ oo By]Y*0n—_1(x) = e2(x), we obtain the following differentiation formulae feg(x)

and e, (x). The differentiation formulae (6.16) and (6.20) (replaciNgby N — 1), in the

limit N — oo, become

0. (6.38)

ey(x) = mo(x)ea(x) (6.40)

e5(x) = —mo(x)er(x). (6.41)
Thus, e1(x) ande,(x) satisfy the differential equation

Y'@) = [Ino)]'y(x) + 7%0*(x)y(x) =0 (6.42)

and we have from these the reproducing kernel conjectured in [8],

N"Lnoo Kn(x.y) = Nlinoo oK (s Y)W () = el(x)ez(y)z : t;z(x)el(y)_
Using the WKB approximation on (6.42), the functian(x),j = 1,2, are linear
combinations of

ye(x) ~ j'% exp[:l:in /x o(s) ds] . (6.44)

This result was conjectured in [8].

(6.43)

7. Conclusion and summary

We have obtained the larg® recurrence coefficients of polynomials orthogonal with
respect to a class of weight function supportedRnas thermodynamics susceptibilities
of a Coulomb fluid in one dimension. These polynomials arise naturally in the theory of
large Hermitian random matrices [24]. The polynomials are shown to satisfy a second-
order ordinary differential equation, thus generalizing the theorem of Bochner. These are
of particular interest since the reproducing keri&l (x, y) plays an important role in
the computation of the variance of linear statistics and the level spacing distribution in
random matrix theory [24]. Using the differential equation, we proved a conjecture on the
semiclassical behaviour of the polynomials arising from a class of indeterminate moment
problems [8] and a conjecture on the ‘edge’ asymptotic of the orthogonal polynomials stated
in [9]

The situation where the spectrum of the Jacobi matrix has gaps will be presented in a
separate paper along with the the associated differential equation.
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